УДК 664.834

ПОЛУЧЕНИЕ И ПРИМЕНЕНИЕ БИОКОРРЕКТОРОВ В ФОРМЕ КРИОПОРОШКОВ ИЗ ОВОЩЕЙ И ФРУКТОВ

RECEIVING AND APPLICATION OF BIOPROOFREADERS IN THE FORM OF CRYOPOWDERS FROM VEGETABLES AND FRUIT

Касьянов Геннадий Иванович

доктор технических наук, профессор, Кубанский государственный технологический университет Тел.: +7(967) 305-65-60 kasyanov@kubstu.ru

Ломачинский Владислав Вячеславович

старший научный сотрудник, Всероссийский НИИ консервной и овощесушильной промышленности lomachinski@mail.ru

Ахмедов Магомед Эминович

доктор технических наук, профессор, Дагестанский государственный технический университет Тел.: +7(928) 934-27-81 akhmag49@mail.ru

Рамазанов Абдулгамид Магомедович

аспирант, Дагестанский государственный технический университет iragi@mail.ru

Яралиева Зоя Алиевна

аспирант, Дагестанский государственный технический университет alievna5656@mail.ru

Аннотация. В статье описан способ получения криопорошков из фруктового и овощного сырья, с использованием жидкого азота. Даны рекомендации по применению криопорошков в качестве биокорректоров. Приведен пример изготовления макаронных изделий обогащенных яблочным пюре и криопорошком из мякоти тыквы.

Ключевые слова: фрукты, овощи, сушка, криоизмельчение, криопорошки, макароны, аппаратурная схема производства

Kasyanov Gennady Ivanovich

Doctor of Engineering, professor, Kuban State University of Technology Ph.: +7(967) 305-65-60 kasyanov@kubstu.ru

Lomachinsky Vladislav Vyacheslavovich

senior research associate,
All-Russian scientific research institute of
the canning and ovoshchesushilny
industry
lomachinski@mail.ru

Akhmedov Magomed Eminovich

Doctor of Engineering, professor, Dagestan State Technical University Ph.: +7(928) 934-27-81 akhmag49@mail.ru

Ramazanov Abdulgamid Magomedovich

post-graduate student, Dagestan State Technical University iragi@mail.ru

Yaraliyeva Zoya Aliyevna

post-graduate student, Dagestan State Technical University alievna5656@mail.ru

Annotation. Method of cryo-powder production from fruit and vegetable raw material with application of liquid nitrogen has been described in the article. Recommendations for application of cryopowder as bio-correctors have been given. Example of macaroni production, enriched by apple puree and pumpkin cryo-powder has been represented.

Keywords: fruits, vegetables, cryocommunition, cryo-powder macaroni, apparatus layout of production

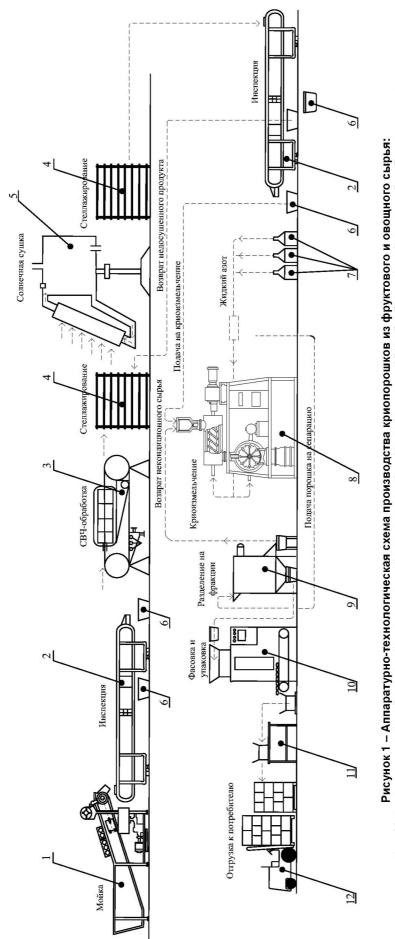
Биокорректоры — это продукты питания, приготовленные из растительного сырья, с помощью которых можно обогатить пищу витаминами, макро- и микроэлементами и другими биологически активными веществами. Много лет ученые занимались ис-

следованиями над созданием этого уникального продукта, которые привели к единственно возможной на сегодняшний день технологии их получения на основе криопорошков, которая позволяет получить уникальные биокорректоры питания. Именно технология криоизмельчения позволяет использовать растительное сырье целиком, вместе с семенами, за счет чего конечный продукт имеет в своем составе все основные компоненты вместе с полезной клеточной оболочки семян.

Исследования направлены на разработку технологии производства плодовоягодных и овощных порошкообразных биокорректоров, предназначенных для использования в качестве легко восстанавливаемых пюре и соков, а также в составе компонентных продуктов в кондитерской, мясной, молочной промышленности и в кулинарии.

В работах В.В.Ломачинского и его коллег из Всероссийского НИИ консервной и овощесушильной промышленности, приводится описание способов, технологических приемов и оборудования для производства плодоовощных криопорошков и их использования в отраслях пищевой промышленности [1–4].

Известены ряд способов получения высококачественных быстро восстанавливаемых порошкообразных продуктов методом сублимационной сушки. Такой способ сушки потребляет суммарную энергоёмкость 5 кВт/ч на кг испаренной влаги, по сравнению с 1,2 кВт/ч при конвективной сушке. Однако применить одностадийную конвективную сушку для получения овощных и фруктовых порошков до настоящего времени не удавалось, так как высушенные этим способом овощи и фрукты невозможно было измельчить до равномерного мелкодисперсного состояния.


Запатентован способ получения инстант-порошка из фруктового и овощного сырья, основанный на сушке сырья в два этапа — в электромагнитном поле СВЧ и конвективной досушке [2]. Подготовку фруктового и овощного сырья осуществляют в соответствии с требованиями технологических инструкций, посредством нарезания на ломтики или кубики. Принятая форма нарезки обеспечивает максимальную удельную поверхность объекта сушки при минимальном сокоотделении. Подготовленное и нарезанное сырье сушат в поле СВЧ до остаточной влажности около 20 % в течение 1 часа, с разогревом до температуры внутри кусочков 80–90 °С. Затем сырье досушивают до остаточной влажности 4–6 % и измельчают традиционными методами с получением целевого продукта. Значение остаточной влажности является традиционным для порошков из растительного сырья.

Поскольку основными компонентами фруктов, ягод и некоторых видов овощей являются сахара и органические кислоты, при концентрировании образующие вязкую клейкую, гигроскопическую и термопластичную по своим свойствам массу, из них трудно получить порошок, тем более хорошо восстанавливающийся. Вкус и цвет восстановленных из порошков продуктов будут неудовлетворительны, если не обеспечены благоприятные для данного вида сырья условия сушки и дробления.

Серьезной проблемой является сохранение аромата. Компоненты, создающие аромат, либо обладают большей летучестью, чем вода, либо образуют с нею азеотропную (нераздельнокипящую) смесь, испаряясь одновременно в процессе сушки.

Неизбежным процессом при производстве плодоовощных порошков является тепловое воздействие на исходное сырьё во время бланширования, сушки и измельчения сушёного продукта. Для получения порошков высокого качества это воздействие на всех этапах производства должно быть минимальным. На рисунке 1 представлена аппаратурно-технологическая схема промышленной линии по производству фруктовых и овощных криопорошков.

Предназначенное для получения криопорошков фруктовое и овощное сырье, проходит предварительную подготовку, мойку, инспекцию и поступает в устройство для СВЧ-обработки (3). Для досушки сырья используется гелиосушилка сушилка (5), а затем высушенный полуфабрикат подается в криомельницу (8). С этой целью используется специально сконструированная аппаратура, работающая на жидком азоте. Полученный порошок в сепараторе (9) разделяется на фракции и поступает в расфасовочно-упаковочный автомат (10), для стерильной упаковки готового порошка в биоразрушаемую пленку. Если оператор обнаруживает, что часть порошка, не удовлетворяет заданным параметрам дисперсности, то он направляется на повторное измельчение.

1 — Моечная машина; 2 — Роликовый инспекционный транспортер; 3 — Устройство для СВЧ-обработки; 4 — Стеллажи; 5 — Гелиосушилка; 6 — Корзина; 7 — Холодильное устройство; 8 — Криомельница; 9 — Сепаратор;

Конструктивные особенности оборудования входящего с состав аппаратурнотехнологической схемы производства криопорошков позволяют в непрерывном автоматизированном режиме полностью контролировать процесс измельчения и качество продукта.

Результаты испытаний позволили рекомендовать форму нарезки овощного или фруктового сырья в виде столбиков или кубиков с гранями по 5 мм. Загружать нарезанное сырье в сушилку необходимо по 200–300 кг, с продолжительностью процесса сушки — 6–12 ч. При этом температура нагрева продукта не должна превышать 40–60 °C, а давление в камере находиться в пределах 7,0–8,0 кПа. Влажность готового продукта не должна превышать 4–6 %. Следует тщательно соблюдать массу продукта в криомельнице не более 3–5 кг, а массу жидкого азота на 1 кг продукта в соотношении 2 : 1.

Значения технологических параметров должны корректироваться индивидуально для каждого вида перерабатываемого овощного или фруктового сырья.

В таблице 1 приведены некоторые показатели химического состава криопорошков. Кроме приведенных в таблице ингредиентов в составе криопорошков обнаружены антоцианы, биофлавоноиды и пектин.

Наимено- вание продукта	Вода %	Бел- ки %	Жир %	Угле- ле- воды %	Клет чатка	3ола %	К мг %	Са мг %	Мg мг %	Р мг %	В₁ мг %	В ₂ мг %	С мг %	PР мг %
Капуста	5,4	13,2	0,0	66,0	7,7	7,7	1700	470	150	290	0,6	0,5	420	4
Морковь	6,0	9,0	1,0	62,0	13,0	9,0	2000	520	390	540	0,6	0,2	65	10
Свекла	7,2	7,7	0,9	54,6	23,0	6,6	2314	360	250	430	0,3	0,4	110	2,6
Тыква	7,0	9,2	0,3	66,0	12,5	5,0	1670	390	145	260	0,5	0,3	85	5
Яблоки	8,0	5,0	0,0	68,0	12,5	6,5	2420	165	102	120	0,1	0,3	120	3

Таблица 1 — Химический состав плодоовощных криопорошков

Разработаны технические условия и технологическая инструкция на «Фруктовые и овощные криопорошки».

В результате выполненных исследований установлено, что технология, предусматривающая сушку овощей и плодов при щадящих режимах, обеспечивающих максимальное сохранение витаминов, ароматических соединений, других лабильных веществ и измельчение сушёных продуктов в среде жидкого азота, что исключает их нагревание за счёт трения, представляет большой практический интерес. Криоизмельчение термопластичных плодоовощных порошков, позволяет снизить энергозатраты по сравнению с другими способами диспергирования и даёт возможность получать порошки заданного гранулометрического состава практически без повторного помола.

На основе проведённого научного обоснования рациональной технологии производства порошков из овощей и фруктов, ЗАО «Корпорация «Роспродмаш» создала опытные образцы вакуумной сушилки и криомельницы, которые прошли государственные испытания и рекомендованы к серийному производству.

Совместно с пищевыми институтами Отделения хранения и переработки сельскохозяйственной продукции Россельхозакадемии нами изучались технологические приёмы использования овощных и фруктовых порошков в качестве компонентов или основы для изготовления готовых пищевых продуктов.

Фруктовые, ягодные и овощные криопорошки позволяют создавать смеси с заданной питательной ценностью, обладают хорошими вкусовыми качествами и могут найти применение при производстве соков, напитков, киселей и соусов на натуральной основе с высокой долей сохранности витаминов и других биологически активных веществ. Порошки из корнеплодов и зелени позволят повысить качество пищевых концентратов первых и вторых блюд. Разработана технология производства натуральных пищевых добавок, в основу которой положено обогащение криопорошков CO_2 -экстрактами и CO_2 -шротами.

Криопорошки могут найти применение в качестве вкусовых и биологически активных добавок при производстве йогуртов, творожных масс и другой кисломолочной продукции, при выпечке хлебобулочных и кондитерских изделий, в начинках конфет, кремах для тортов и пирожных, при производстве мороженого, различных каш и супов быстрого приготовления с фруктовыми, ягодными и овощными добавками.

Криопорошки из лекарственных трав содержат комплексы важных натуральных биологически активных веществ, определяющих их лечебное и лечебнопрофилактическое действие.

Исследование химических и физических свойств различных фракций криопорошков показало, что химический состав различных фракций не зависит от гранулометрического состава, а растворимость возрастает обратно пропорционально размеру частиц (табл. 2).

Линейные размеры частиц, мм	Чёрносмородиновый	Тыквенный	Морковный
более 0,5	60,0		37,5
0,5-0,25	65,0	70,0	48,6
0,25-0,15	68,6	71,35	52,9
0,15–0,1	70,0	72,8	54,6
0,1-0,07	69,0	74,8	59,6
MAUAA 0 07	85 N	75 Q	60.6

Таблица 2 — Растворимость различных фракций плодоовощных криопорошков (в % к массе)

Структурно механические свойства образующихся дисперсных систем изучали с использованием вискозиметров «Brookfield», «Haake ReoVin» и «Реотест» при различных скоростях сдвига. Отмечено, что вязкость изучаемых систем уменьшается с увеличением скорости сдвига, то есть дисперсные системы неньютоновского типа.

Эффективная вязкость существенно зависит от гранулометрического состава порошков: фракция от 250 до 500 мкм имеет эффективную вязкость в 20–25 раз выше, чем фракции от 0 до 250 мкм.

Совместно с ГНУ НИИ кондитерской промышленности и ГОСНИИ хлебопекарной промышленности изучена возможность обогащения криопорошками кондитерских и макаронных изделий [1].

В лабораторных условиях ГНУ НИИ кондитерской промышленности проведена серия экспериментов по определению технологических параметров и оптимального соотношения рецептурных компонентов желейного мармелада на агаре с криопорошком из тыквы [4].

На основании проведенных экспериментальных исследований и использованием метода наименьших квадратов получена зависимость, определяющая показатели качества мармелада по органолептической оценке в зависимости от показателей качества полуфабрикатов в виде уравнения регрессии:

$$Y = 13.7 + 5.7x_1 + 1.6x_2, \tag{1}$$

где У — балльная оценка качества мармелада; x_1 — массовая доля сухих веществ в агаро-сахаро-паточном сиропе; x_2 — массовая доля сухих веществ во фруктово-овощной смеси.

Установлено, что наибольшей желирующей способностью обладает фруктовоовощная смесь (яблочное пюре — криопорошок из тыквы) при использовании порошка из тыквы купажной фракции 150–500 мкм с содержанием сухих веществ 25 %.

В последнее время всё большую популярность приобретают макаронные изделия с различными обогащающими добавками. Поэтому было изучено влияние на качество макаронных изделий порошков тыквы. Порошки тыквы использовали в количестве 3, 5, 10, 15 % к массе муки. Макаронные изделия вырабатывали на оборудовании фирмы «la Monferina». Цвет макаронных изделий определяли методом трёх светофильтров на фотометре ФМШ-56М

Анализ экспериментальных данных показал, что при производстве макаронных изделий целесообразно использовать криопорошок тыквы в дозировке до 10 % к массе муки. Порошок тыквы, полученный без криозамораживания, можно добавлять не более 5 % к массе муки.

Основные направления использования криопорошков при производстве новых пищевых продуктов представлены на рисунке 2 [5, 6].

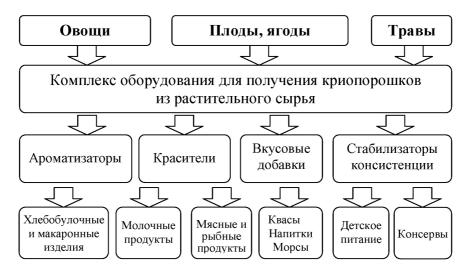


Рисунок 2 — Направления использования криопорошков при производстве пищевых продуктов

Схема показывает широкие возможности эффективного применения криопорошков из растительного сырья для создания новых видов и улучшения качества традиционных пищевых продуктов.

выводы

Разработана технология получения криопорошков из овощного, фруктового и ягодного сырья. Предложена схема аппаратурно-технологической линии с элементами щадящей сушки и криоизмельчения в среде жидкого азота. Испытаны и рекомендованы к серийному производству опытные образцы оборудования.

Даны рекомендации по основным направлениям использования биокорректоров в форме криопорошков для производства новых и традиционных видов пищевых продуктов.

Литература:

- 1. Ломачинский В.В. Разработка технологии плодоовощных криопорошков и их использование в пищевой промышленности : Автореф. дис. ... канд. техн. наук / В.В. Ломачинский. Краснодар : КубГТУ, 2010. 22 с.
- 2. Патент РФ 2315534. МПК A 23 L 3/01. Способ производства инстант-порошка из растительного сырья / Ломачинский В.В.; Мегердичев Е.Я.; Квасенков О.И.; Филиппович В.П. // Заявка № 2006118179/13. Заявл. 29.05.2006. Опубл. бюл. № 3 от 27.01.2008.
- 3. Патент РФ на полезную модель № 54319. Криомельница / Ломачинский В.В.; Филиппович В.П.; Квасенков О.И. // Опубл. бюл. № 18 от 27.06.2006.
- 4. Леончик Б.И., Ломачинский В.В. О задачах совершенствования криотехнологии производства овощных порошков // Сб. докладов III юбилейной международной выставки-конференции «Высокоэффективные пищевые технологии, методы и средства для их реализации». М.: МГУПП, 2005. С. 246–248.
- 5. Джаруллаев Д.С., Рамазанов А.М., Яралиева З.А., Сязин И.Е. Совершенствование технологической линии производства плодоовощных криопорошков // Известия вузов. Пищевая технология. 2012. № 4. С. 64–66.
- 6. Яралиева З.А. Технология быстрорастворимых плодово-ягодных криопорошков. В сб. материалов междун. научно-технич. Интернет-конф. «Инновационные технологии в пищевой промышленности». Краснодар: КубГТУ, 2011. С. 72–74.

References:

- 1. Lomachinsky V.V. Development of technology of fruit and vegetable cryopowders and their use in the food industry: Avtoref. yew. ... Cand. Tech. Sci. / V.V. Lomachinsky. Krasnoda: KubSTU, 2010. 22 p.
- 2. Patent Russian Federation 2315534. MPK A 23 L 3/01. A way of production of instant-powder from vegetable raw materials / Lomachinsky V.V.; Megerdichev E.Ya.; Kvasenkov O.I.; Filippovich V.P. // Demand No. 2006118179/13. Zayavl. 29.05.2006. Opubl. bulletin No. 3 of 27.01.2008.
- 3. Patent Russian Federation for useful model No. 54319. Cryomill / Lomachinsky V.V.; Filippovich V.P.; Kvasenkov O.I. // Opubl. bulletin No. 18 of 27.06.2006.
- 4. Leonchik B.I., Lomachinsky V.V. O problems of improvement of a kriotekhnolo-giya of production of vegetable powders // Sb. reports of the III anniversary international exhibition conference «Highly Effective Food Technologies, Methods and Means for Their Realization». M.: MGUPP, 2005. P. 246–248.
- 5. Dzharullayev D.S., Ramazanov A.M., Yaraliyev Z.A., Syazin I.E. Improvement of a technological production line of fruit and vegetable cryopowders // News of higher education institutions. Food technology. 2012. No. 4. P. 64–66.
- 6. Yaraliyeva Z.A. Tekhnologiya of instant fruit and berry krioporosh-k. On Saturday. materials intern. scientific tech. Internet conf. «Innovative technologies in the food industry». Krasnodar: KubSTU, 2011. P. 72–74.